3.84 \(\int \frac {\sec ^3(c+d x)}{(a+a \sec (c+d x))^5} \, dx\)

Optimal. Leaf size=139 \[ \frac {2 \tan (c+d x)}{45 d \left (a^5 \sec (c+d x)+a^5\right )}+\frac {2 \tan (c+d x)}{45 a^3 d (a \sec (c+d x)+a)^2}+\frac {\tan (c+d x)}{15 a^2 d (a \sec (c+d x)+a)^3}-\frac {2 \tan (c+d x)}{9 a d (a \sec (c+d x)+a)^4}+\frac {\tan (c+d x)}{9 d (a \sec (c+d x)+a)^5} \]

[Out]

1/9*tan(d*x+c)/d/(a+a*sec(d*x+c))^5-2/9*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^4+1/15*tan(d*x+c)/a^2/d/(a+a*sec(d*x+c
))^3+2/45*tan(d*x+c)/a^3/d/(a+a*sec(d*x+c))^2+2/45*tan(d*x+c)/d/(a^5+a^5*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3799, 4000, 3796, 3794} \[ \frac {2 \tan (c+d x)}{45 d \left (a^5 \sec (c+d x)+a^5\right )}+\frac {2 \tan (c+d x)}{45 a^3 d (a \sec (c+d x)+a)^2}+\frac {\tan (c+d x)}{15 a^2 d (a \sec (c+d x)+a)^3}-\frac {2 \tan (c+d x)}{9 a d (a \sec (c+d x)+a)^4}+\frac {\tan (c+d x)}{9 d (a \sec (c+d x)+a)^5} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + a*Sec[c + d*x])^5,x]

[Out]

Tan[c + d*x]/(9*d*(a + a*Sec[c + d*x])^5) - (2*Tan[c + d*x])/(9*a*d*(a + a*Sec[c + d*x])^4) + Tan[c + d*x]/(15
*a^2*d*(a + a*Sec[c + d*x])^3) + (2*Tan[c + d*x])/(45*a^3*d*(a + a*Sec[c + d*x])^2) + (2*Tan[c + d*x])/(45*d*(
a^5 + a^5*Sec[c + d*x]))

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3796

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a
+ b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 3799

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(
a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m
+ 1)*(a*m - b*(2*m + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)
]

Rule 4000

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x)}{(a+a \sec (c+d x))^5} \, dx &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}+\frac {\int \frac {\sec (c+d x) (-5 a+9 a \sec (c+d x))}{(a+a \sec (c+d x))^4} \, dx}{9 a^2}\\ &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}-\frac {2 \tan (c+d x)}{9 a d (a+a \sec (c+d x))^4}+\frac {\int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^3} \, dx}{3 a^2}\\ &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}-\frac {2 \tan (c+d x)}{9 a d (a+a \sec (c+d x))^4}+\frac {\tan (c+d x)}{15 a^2 d (a+a \sec (c+d x))^3}+\frac {2 \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{15 a^3}\\ &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}-\frac {2 \tan (c+d x)}{9 a d (a+a \sec (c+d x))^4}+\frac {\tan (c+d x)}{15 a^2 d (a+a \sec (c+d x))^3}+\frac {2 \tan (c+d x)}{45 a^3 d (a+a \sec (c+d x))^2}+\frac {2 \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{45 a^4}\\ &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}-\frac {2 \tan (c+d x)}{9 a d (a+a \sec (c+d x))^4}+\frac {\tan (c+d x)}{15 a^2 d (a+a \sec (c+d x))^3}+\frac {2 \tan (c+d x)}{45 a^3 d (a+a \sec (c+d x))^2}+\frac {2 \tan (c+d x)}{45 d \left (a^5+a^5 \sec (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 110, normalized size = 0.79 \[ \frac {\sec \left (\frac {c}{2}\right ) \left (-45 \sin \left (c+\frac {d x}{2}\right )+54 \sin \left (c+\frac {3 d x}{2}\right )-30 \sin \left (2 c+\frac {3 d x}{2}\right )+36 \sin \left (2 c+\frac {5 d x}{2}\right )+9 \sin \left (3 c+\frac {7 d x}{2}\right )+\sin \left (4 c+\frac {9 d x}{2}\right )+81 \sin \left (\frac {d x}{2}\right )\right ) \sec ^9\left (\frac {1}{2} (c+d x)\right )}{5760 a^5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + a*Sec[c + d*x])^5,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^9*(81*Sin[(d*x)/2] - 45*Sin[c + (d*x)/2] + 54*Sin[c + (3*d*x)/2] - 30*Sin[2*c + (3*
d*x)/2] + 36*Sin[2*c + (5*d*x)/2] + 9*Sin[3*c + (7*d*x)/2] + Sin[4*c + (9*d*x)/2]))/(5760*a^5*d)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 123, normalized size = 0.88 \[ \frac {{\left (2 \, \cos \left (d x + c\right )^{4} + 10 \, \cos \left (d x + c\right )^{3} + 21 \, \cos \left (d x + c\right )^{2} + 10 \, \cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{45 \, {\left (a^{5} d \cos \left (d x + c\right )^{5} + 5 \, a^{5} d \cos \left (d x + c\right )^{4} + 10 \, a^{5} d \cos \left (d x + c\right )^{3} + 10 \, a^{5} d \cos \left (d x + c\right )^{2} + 5 \, a^{5} d \cos \left (d x + c\right ) + a^{5} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^5,x, algorithm="fricas")

[Out]

1/45*(2*cos(d*x + c)^4 + 10*cos(d*x + c)^3 + 21*cos(d*x + c)^2 + 10*cos(d*x + c) + 2)*sin(d*x + c)/(a^5*d*cos(
d*x + c)^5 + 5*a^5*d*cos(d*x + c)^4 + 10*a^5*d*cos(d*x + c)^3 + 10*a^5*d*cos(d*x + c)^2 + 5*a^5*d*cos(d*x + c)
 + a^5*d)

________________________________________________________________________________________

giac [A]  time = 0.53, size = 46, normalized size = 0.33 \[ \frac {5 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 18 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 45 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{720 \, a^{5} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^5,x, algorithm="giac")

[Out]

1/720*(5*tan(1/2*d*x + 1/2*c)^9 - 18*tan(1/2*d*x + 1/2*c)^5 + 45*tan(1/2*d*x + 1/2*c))/(a^5*d)

________________________________________________________________________________________

maple [A]  time = 0.40, size = 45, normalized size = 0.32 \[ \frac {\frac {\left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{9}-\frac {2 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{16 d \,a^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+a*sec(d*x+c))^5,x)

[Out]

1/16/d/a^5*(1/9*tan(1/2*d*x+1/2*c)^9-2/5*tan(1/2*d*x+1/2*c)^5+tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [A]  time = 0.60, size = 67, normalized size = 0.48 \[ \frac {\frac {45 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {18 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {5 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}}{720 \, a^{5} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^5,x, algorithm="maxima")

[Out]

1/720*(45*sin(d*x + c)/(cos(d*x + c) + 1) - 18*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 5*sin(d*x + c)^9/(cos(d*x
 + c) + 1)^9)/(a^5*d)

________________________________________________________________________________________

mupad [B]  time = 0.66, size = 45, normalized size = 0.32 \[ \frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-18\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+45\right )}{720\,a^5\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^3*(a + a/cos(c + d*x))^5),x)

[Out]

(tan(c/2 + (d*x)/2)*(5*tan(c/2 + (d*x)/2)^8 - 18*tan(c/2 + (d*x)/2)^4 + 45))/(720*a^5*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\sec ^{3}{\left (c + d x \right )}}{\sec ^{5}{\left (c + d x \right )} + 5 \sec ^{4}{\left (c + d x \right )} + 10 \sec ^{3}{\left (c + d x \right )} + 10 \sec ^{2}{\left (c + d x \right )} + 5 \sec {\left (c + d x \right )} + 1}\, dx}{a^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+a*sec(d*x+c))**5,x)

[Out]

Integral(sec(c + d*x)**3/(sec(c + d*x)**5 + 5*sec(c + d*x)**4 + 10*sec(c + d*x)**3 + 10*sec(c + d*x)**2 + 5*se
c(c + d*x) + 1), x)/a**5

________________________________________________________________________________________